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ABSTRACT 

 
This paper reports on a new algorithm to detect the presence 
of a known acoustic signal in an unknown source. The 
algorithm, Map Seeking Circuits, has been successfully 
used in the visual domain. The algorithm seeks to find an 
appropriate transform that will match a stored template to an 
unknown signal. The algorithm uses superposition to 
significantly reduce the computational complexity of 
searching for a given feature in a signal. This results in a 
linear computational increase rather than an exponential 
increase as the complexity of the signal increases. The 
algorithm was tested with a corpus of six instruments. 
Results varied from 66% for the piano to 94% for the horn.  
 
Index Terms— map seeking circuits, acoustic, detection, 
template matching 

 
1. INTRODUCTION 

 
The human auditory system is quite adept at recognizing 
sounds. It appears that the auditory system uses both source 
separation and recognition to accomplish this task. Acoustic 
source separation often falls in the category of 
Computational Auditory Scene Analysis (CASA). Although 
progress has been made in CASA research, nothing has 
come close to the capability of the human auditory system.  

In the past several years, research has focused on sound 
identification or classification. Most of the techniques 
proposed rely on traditional pattern classification techniques 
which require a clean signal with little noise. 

This work proposes using a new algorithm with the goal 
of detecting acoustic events in a noisy background. In this 
context noise is defined as any additive signal in addition to 
the sought after target. This paper reports on work showing 
that the algorithm is capable of identification of a clean 
target. Subsequent work will test the algorithm with noise 
added to the input signal. 

Classification and detection techniques fall into two 
major categories: feature based classifiers and template 
matching. Feature based classifiers extract a feature vector 
from a signal and typically uses a clustering algorithm such 

as k-means to discriminate between groups for classification 
or between individuals for detection. Template methods use 
a known representation of a target signal and attempt to 
match it to a pattern.  

A common problem for template matching techniques is 
the computational complexity that increases exponentially 
with the dimensionality of the data set. To overcome this, 
transforms are often used to produce invariance along one 
or more dimensions [1]. 

Arathorn proposed a novel template matching technique, 
Map Seeking Circuits (MSCs), to overcome the 
combinatorial explosion of template matching without the 
need to define invariant transforms [2]. A MSC seeks to 
find an appropriate set of transforms that map a stored 
template to an unknown signal. The algorithm uses 
superposition with an iterative matching process to 
converge on the best set of transforms that map a template 
to a target in an input signal.  

A MSC is comprised of one or more layers and a set of 
templates. Each layer represents a dimension and an 
associated transform such as translation, scale or rotation. 
The algorithm performs a set of transforms at each layer and 
sums the result. The result is then sent to the following layer 
where the process is repeated for another dimension. The 
algorithm depends on The Ordering Principle of 
Superposition [3]. The principle states that if matches are 
computed between a pattern, A, and a superposition of a set 
of patterns, the match will be greatest for the pattern within 
the superposition that is most like A. The use of 
superposition reduces the computational complexity from 
exponential growth to linear growth, thus making the 
problem tractable.  

MSCs employ a nonlinear competition function to cull 
out the poorer transforms. The process is iterative and 
continues until it convergences to a solution The ordering 
principle of superposition ensures that the MSC finds the 
best transform set that maps the template to the target within 
the input signal. 

Work has been submitted showing that the MSC 
algorithm will converge to either a set of unique transforms, 
one for each layer, or a null condition which indicates that a 
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mapping of the template to the test signal is not possible 
with the given set of transforms [4]. 

In this paper we expand on previous work that uses the 
MSC concept for acoustic signals, Acoustic Map Seeking 
Circuits (AMSCs). Previously, we demonstrated a single 
layer AMSC using the amplitude of an instrument’s 
spectrum to identify an input signal [5]. The template and 
signal were limited to the sustained portion of the signal. In 
this paper we demonstrate a three layer AMSC that uses 
amplitude, time, and frequency transforms for each layer. 
We also allow the signal to have an attack and decay 
portion. Research has shown that the attack portion of an 
acoustic signal is important for its recognition by humans 
[6, 7, 8] and is valuable for identification of instruments by 
automatic means [9, 10, 11].  

The AMSC uses a gammatone filter bank to create a 
time versus frequency representation of both the input 
signal and the template or gammagram. The gammagram is 
a biologically inspired frequency versus time representation 
of an acoustical signal. Since the bandwidth of a gammatone 
filter bank increase with the filter’s center frequency, its use 
also leads to a more compact representation along the 
frequency dimension.  

An instrument’s template is created by combining 
several gammagrams of adjacent semitones produced by the 
instrument. This results in a characteristic surface that 
represents the instrument’s resonances and temporal 
evolution in the time-frequency plane. The AMSC then uses 
simple shifts along the time, amplitude and frequency axes 
to align the template with the test signal’s gammagram. The 
algorithm requires at least one transform along each 
dimension to have a minimum match value and a transform 
that consistently produces a better match throughout the 
iterative process. If either of these conditions fails the 
algorithm produces a null condition. A null condition 
indicates that the AMSC failed to find a possible mapping 
between the target and the template.  

 
2. MAP SEEKING CIRCUITS 

 
The MSC concept is shown in Figure 1. The MSC has two 
paths, a forward path and a backward path. The forward 
path transforms the input along predefined dimensions. If a 
set of the transforms match the input to one of several stored 
templates, the most promising transforms are enhanced on 
the backward path by virtue of a competition function. After 
several iterations, the MSC has one of two possible 
outcomes: the best template is mapped via the chosen 
transforms to an object in the input, or no transform set is 
found. In the latter case this is the null condition; none of 
the templates were found in the mixture.  
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Figure 1:  Map seeking circuit topology 

 
Figure 1 illustrates a MSC with two transform sets and 

one template. The left hand side of the diagram is the 
forward path. Here the input is transformed first 
horizontally, shown in panel two, and then vertically as 
shown in panel 4. In this example, a horizontal shift to the 
left and a vertical shift down match the transformed square 
to the template which is also a square.  

On the backward path, the template is compared to 
panel 4 and is then inverse transformed where it is then 
compared to panel 3. One final inverse transform places the 
template in the same position of the square in the original 
input, but without the circle. 

As the iterations progress, the poorer transforms are 
attenuated with respect to the better ones. Eventually, the 
algorithm forces all transforms to zero except for the best 
transform along each dimension. At this point the algorithm 
has successfully mapped the template to the mixture. If the 
algorithm can not find a mapping between the target and the 
template, then all the transforms are driven to zero resulting 
in a null result.  

The MSC algorithm will always converge to either a set 
of unique transforms or a null condition where all the 
transforms in each layer are driven to zero. In the case that a 
unique set of transforms are found, the similarity of the 
input and the inverse transformed template must exceed a 
threshold for a positive mapping to result. The threshold is 
set by comparing the similarities of several positive inputs 
to negative inputs during a training session. Ideally, there 
will be a large discrepancy between the two. If there is 
overlap, then amount of false rejection errors can be traded 
for false acceptance errors depending on which is 
considered more valuable for a given application. 
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3. METHOD 

 
3.1. Data preparation 
 
The input and template AMSC objects are three dimensional 
representations of the sound along the time, amplitude and 
frequency axes. To convert a sound into an AMSC object, 
the sound was first band limited to 8 kHz and then 
spectrally decomposed using a gammatone filter bank. The 
magnitude of each filter bank output, or bin, was then found 
by calculating the absolute value of its analytic signal. To 
reduce the size of the data set, the outputs were then 
downsampled by 10. Finally, the data was converted to a 
three dimensional representation that is equivalent to a 
waterfall plot. The total time of each sample was 62.5 ms.  

 
3.2. Templates and targets 
 
Both the template and target are prepared as described in 
Section 3.1. The template differs from a target in that it is a 
composite of 12 semitones spanning an octave. It is also 
complied with a set of two or three instances of the 
instrument, depending on what was available.  

Two methods were used to create the templates. The 
first, Aver, averaged the instrument’s partials along the 
amplitude axis. Thus, it is effectively is a surface described 
in the three dimensional space.  

The second method added the partial tracks in three 
dimensions to create an aggregate representation of the 
template, Aggr.  Whereas the first method resulted in a 
single track in the amplitude and frequency plane, the 
second method allowed each template instrument to have its 
own track. This created a surface as the first method did but 
with a finite volume in the amplitude dimension. 

The target was assumed to be a single note within the 
octave used to create the template. As such is has a discrete 
set of contours that describe the amplitude of each partial as 
a function of time. 

 
3.3. Transforms 
 
The transforms used in this paper are simple shifts along 
each of the axes: Time, Amplitude, and Frequency. The 
spectrum of an instrument is largely determined by its 
resonance characteristics. The goal therefore, is to match the 
contours of the target’s partials to the surface of the 
template. 

The time transform varied +/- 23.4 ms in 1.6 ms 
increments. The amplitude transform range was chosen to 
ensure that it fully bracketed the average RMS power 
calculated over the duration of the signal, typically -10 dB 
to 30 dB. The resolution of the amplitude transform was 
1dB. The frequency transform had a more restricted range 

of +/- 1 bin. Another set of tests were ran with no shift 
allowed in the frequency dimension. 

 
3.4. Data 
 
The templates were derived from the RWC instrument 
database [12]. The RWC database has three instances for 
most instruments played at a variety of dynamic levels and 
styles. The sounds used in this paper were limited to a 
common dynamic level, forte, and were non vibrato. The 
semitones of the fourth octave, C4 to B4, comprised the 
template.  

The target samples were obtained from the musical 
instrument recordings compiled by the University of Iowa 
Experimental Music Studios [13]. They were limited to the 
same dynamic level and playing style as the templates. As 
with the template the targets were taken from the fourth 
octave.  

Six instruments were chosen to encompass the string, 
brass, and woodwind families. They were the alto sax, flute, 
French horn, oboe, piano, and violin.  

 
3.5. Experiments 
 
Four variations of the experiment were performed as shown 
in Table 1. Each variation consisted of a matrix using one of 
the six templates and the six target instruments as test input. 
Additionally, each instrument provided five notes, across 
the fourth octave.  
 

Experiment 
Variation 

 
+/- 1 Bin 

 
No Shift 

Aggregate Aggr +/-1 Aggr 0 
Average Aver +/-1 Aver 0 

   
Table 1: Experimental variations. 
 

Six tests were run using the templates of the six 
instruments. Each test compared six recorded notes of each 
instrument to the template in a given test. The musical 
pitches used were C4, D4, E4, F4, A4 and B4. The flute was 
slightly different because one of the samples used for the 
template did not contain the entire fourth octave. The notes 
used for the flute targets were C4, D4, E4, F4 and G4. The 
error rate was calculated for each combination of the 
experiments listed in Table 1 and the templates. The 
experiment that provided the best error rate for each of the 
six templates is listed in the results section.  

The error rate was calculated using  
 

PT = (PPEP + PNEN)/N, 
  
where PP and PN are the probabilities of a positive and 

negative target respectively. EP is the number of false 
rejections of a positive target and EN is the number false 
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acceptances of a negative target. N is the total number of 
notes or targets in the corpus.  

A positive target is a sample taken from the same type of 
instrument that was used to create the template. Conversely, 
a negative target is one that is from a different instrument 
than the template instrument. 

Each test had 30 targets of which five were positive and 
25 were negative. Thus,  

 
PP = 5/30, PN = 25/30 and N = 30. 

 
4. RESULTS 

 
The discrimination threshold mentioned in Section 2 was a 
hard decision boundary. That is, if a positive target resulted 
in a value less than the threshold it was rejected. 
Conversely, if it was above the threshold, it was accepted 
and visa versa for a negative target. No attempt was made to 
judge the distance between the final reconstructed similarity 
value and the threshold. 

Tables two and three tabulate the total error as a function 
of the number of positive targets rejected. They also list the 
experiment variation that resulted in the minimum error. 

 
 

 
Template 

 
Negative 
Acceptances 

Total 
Error 

PE  (%) 

 
Best 

Variation 
AS 11 31 Aggr 0 
FL 6 17 Aggr +/-1 
HN 2 6 Aver +/-1 
OB 10 28 Aver 0 
PN 13 36 Aggr +/-1 
VN 6 17 Aver 0 

 
Table 2: AMSC incorrect acceptances with threshold set for 
zero positive rejections. 

 
 
 

 
Template 

 
Negative 
Acceptances 

Total 
Error 

PE (%) 

 
Best 

Variation 
AS 10 28 Aggr 0 
FL 5 14 Aggr +/-1 
HN 2 6 Aver +/-1 
OB 4 12 Aver 0 
PN 13 37 Aggr +/-1 
VN 5 14 Aver 0 

 
Table 3: AMSC incorrect acceptances with the threshold 
set for one positive rejection. 

 

Table 4 is a confusion matrix of the false acceptance of a 
negative target when the threshold is set for zero false 
rejections of the positive targets. Each row is a different 
template, and the columns represent the targets. The totals 
in the rightmost column are the incorrect acceptances of a 
target by a given template, while the totals in the bottom 
row are the incorrect rejections of each target. 

 

 

 AS FL HN OB PN VN TOTAL 
AS 0 5 2 1 2 1 11 
FL 0 0 2 0 3 1 6 
HN 0 1 0 0 1 0 2 
OB 1 2 1 0 2 4 10 
PN 4 3 4 0 0 2 13 
VN 2 3 0 1 0 0 6 
TOTAL 7 14 9 2 8 8 48 

Table 4: Errors with the threshold set for zero positive 
rejections. 

 
 

5. DISCUSSION 
 
The instruments tested fell into three categories. In the top 
category is the horn with an error of just 6%. The flute and 
the violin fall in the middle with an error of 17%. The 
AMSC performed worst with the oboe, alto sax and piano. 
This was somewhat surprising. We expected the 
representation to adequately capture the formants produced 
resonant structure of the wind instruments. The violin 
performing better than the oboe or alto saxophone was 
counter intuitive. It is possible that the sample window used, 
62.5 ms, was simply too short to capture the spectral 
characteristics of the woodwinds which is predominate in 
the sustained portion of the sound. The impetus for using a 
short sample was primarily to focus on the attack potion of 
the signal which is assumed to be more invariant that the 
sustained or decay portions. 

While the flute template was best in correctly tagging the 
flute targets, the other templates falsely accepted a flute 
target more than any other instrument. This is seen in the 
total incorrect rejections in the bottom row of Table 4. This 
may be due to the relatively pure sinusoidal characteristics 
of the flute partials. 

The oboe was just the opposite. The oboe template 
incorrectly tagged another instrument as an oboe 10 times, 
yet the other templates rarely accepted the oboe target.  

Overall, the error rates shown in Tables 2 and 3 compare 
favorably to previous work. Fujinaga using a variety of 
weighted moments obtained error rates of 8% for the horn, 
30% for the flute and more than 60% error for the oboe and 
violin [14].  

Brown used cepstral coefficients and was able to 
discriminate between an oboe and saxophone with an error 
of 10% and 4% respectively [15]. Although the overall 
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performance of the oboe and saxophone had about 30% 
error, when they are compared against each other, the 
AMSC performed quite well. It incurred only one error 
when comparing the horn to the oboe template and 
produced no error when the horn template was presented 
with an oboe. 

It was also quite surprising that there was no clear 
winner between the four variations generated between the 
two different template representations and the frequency 
transform. The frequency transform was included because 
some samples such as the oboe were found in preliminary 
work to have the partials shifted by one gammatone bin. It 
was thought that allowing a minor variation in frequency 
would help the performance of the AMSC when presented 
with an oboe target. In fact just the opposite was true. The 
oboe template performed best when there was no transform 
in the frequency.  

It is not clear why none of the variations proved better 
overall. It is possible that the characteristics of some 
instruments tend to favor one variation over another. In this 
case the better performing variation would be included in a 
portfolio that would be loaded whenever that particular 
instrument or class of sounds was sought to be detected. 

 
6. FUTURE WORK 

 
The eventual goal of this effort is to develop a robust 
technique to detect a sound in the midst of noise. 
Identification of a pure sound as demonstrated in this paper 
is the first step. Ongoing work includes testing the current 
implementation with varying amounts and types of noise. 

The representation can be further refined to include 
additional characteristics that are valuable in sound 
discrimination. Finally, a more compact representation of 
the data will lead to a faster and more versatile algorithm.  
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