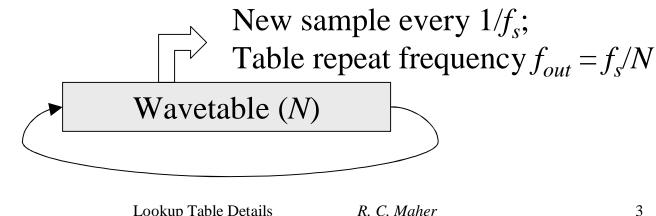

Notes on Lookup Tables for Signal Generation

R.C. Maher

EE 475 Fall 2005


Stored Waveform Lookup

• Start with an array of *N* uniformly spaced signal samples covering one waveform period

"Wavetable" Frequency Control

- Assume table is length N, holds one period of the signal, and the sample rate is f_s samples per second (Hz)
- If every stored value in the table is used, the waveform repetition frequency, f_{out} , is f_s/N

EE 475 Fall 2005

Lookup Table Details

Frequency Control (cont.)

- In order to have a waveform repetition frequency different than f_s/N , you need to *re-sample* the stored data.
- Typically use a *phase counter* or *look-up index* (LUI) to hold the current table location.
- The resampling "hop" through the table is the *sample increment* (SI), defined by:

$$SI = N \cdot \frac{f_{out}}{f_s}$$

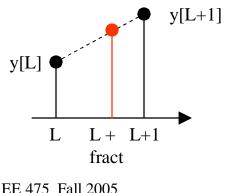
Frequency Control (cont.)

• The current lookup index is calculated iteratively

 $LUI[n+1] = \{ LUI[n] + SI \} modulo N$

- LUI increments from zero up through N-1, then rolls over back to zero
- The *integer* part of LUI points to the fetch location in the table; the *fractional* part of LUI can be used for interpolation

Wavetable Lookup Example


- $f_s = 48000 \text{ Hz}, N = 1024$, desired $f_{out} = 440 \text{ Hz}$
- SI=1024×440 / 48000 = 9.386667

LUI	Truncated
0.000000	0
9.386667	9
18.773334	18
28.160001	28
37.546668	37
46.933335	46
56.320002	56
994.986702	994
1004.373369	1004
1013.760036	1013
1023.146703	1023
8.533370	8
17.920037	17

Lookup Table Details

Linear Interpolation

- LUI fractional part is used to *interpolate* the table.
- Need to handle "end of table" issue: LUI may point to region between last stored sample and the start of the table
- There is *distortion* due to the difference between the "true" value and the linear interpolation

$$y[L + fract] = y[L] + fract \cdot (y[L+1] - y[L])$$

EE 475 Fall 2005

Lookup Table Details

R. C. Maher

Aliasing due to resampling

- The discrete-time signal represented by the wavetable has a spectrum that may occupy the entire bandwidth from 0 $f_s/2$
- Re-sampling the waveform to change its period can result in aliasing if the wavetable is not properly bandlimited