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Commonly in environmental and ecological studies, species distribution data are recorded as presence or absence through-
out a spatial domain of interest. Field based studies typically collect observations by sampling a subset of the spatial domain.
We consider the effects of six different adaptive and two non-adaptive sampling designs and choice of three binary models
on both predictions to unsampled locations and parameter estimation of the regression coefficients (species–environment
relationships). Our simulation study is unique compared to others to date in that we virtually sample a true known spatial
distribution of a nonindigenous plant species, Bromus inermis. The census of B. inermis provides a good example of a species
distribution that is both sparsely (1.9 % prevalence) and patchily distributed. We find that modeling the spatial correlation
using a random effect with an intrinsic Gaussian conditionally autoregressive prior distribution was equivalent or superior
to Bayesian autologistic regression in terms of predicting to un-sampled areas when strip adaptive cluster sampling was
used to survey B. inermis. However, inferences about the relationships between B. inermis presence and environmental
predictors differed between the two spatial binary models. The strip adaptive cluster designs we investigate provided a sig-
nificant advantage in terms of Markov chain Monte Carlo chain convergence when trying to model a sparsely distributed
species across a large area. In general, there was little difference in the choice of neighborhood, although the adaptive
king was preferred when transects were randomly placed throughout the spatial domain. Copyright © 2013 John Wiley &
Sons, Ltd.

Keywords: autologistic regression; Bayesian estimation; intrinsic conditionally autoregressive; low prevalence; strip adaptive
cluster sampling

1. INTRODUCTION
A common goal in environmental and ecological studies is to model species distributions across a spatial domain of interest (e.g., Guisan
and Thuiller, 2005). Typically, in these observational studies, it is of interest to both make predictions to unsampled areas and to under-
stand species–environment relationships. Modeling nonindigenous plant species (NIS) across large landscapes, but at fine spatial resolution,
presents additional challenges because they typically, depending on the stage of invasion, display sparse and patchy spatial distributions
(Figure 1). Field based observations are the most reliable way to detect NIS populations. Consequently, data are collected by sampling a
subset of the spatial domain of interest and, commonly, recorded as presence or absence due to logistical and cost constraints. For this type
of data, two practical questions are (i) how should sampling be conducted to obtain optimal predictions and valid inferences concerning
species–environment relationships; and (ii) what type of binary spatial model to use?
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Figure 1. Map of Bromus inermis distribution at Little Bighorn Battlefield National Monument in Montana (with roads and trails represented) from survey
conducted during Summer of 2010. Gray areas = Bromus inermis presences

For binary data that can be considered independent after accounting for environmental predictors, a common choice for analysis is logistic
regression (LOGIT). Specifically, denote

Yi D

�
1 if species present in cell i
0 otherwise

(1)

the probability of species presence .�i / at spatial location i is modeled as a linear function of environmental predictors via the logit link,

logit.�i /D log

�
�i

1� �i

�
DXˇ: (2)

We consider two spatial extensions to the LOGIT model, autologistic regression (ALR) and an intrinsic Gaussian conditional autoregres-
sive (ICAR) model. The ALR model extends (2) by including an autocovariate, an additional predictor variable, that is constructed as a
function of the response values (Y ) within a defined neighborhood around location i ,

logit.�i /DXˇC ıautocovi (3)

where autocovi D
P
j2nbs.i/ Yj where nbs.i/ is the set of neighbors for cell i . Previous applications employing ALR for species distribu-

tion modeling have found that compared to LOGIT the coefficient estimates .ˇ/ in (3) can decrease toward zero, becoming both statistically
and biologically non-significant (Gumpertz et al., 1997; Wu and Huffer, 1997; Dormann et al., 2007; Jewell et al., 2007).

Autologistic regression was originally developed for modeling binary data collected on a lattice with all values observed. The issue with
estimating the parameters using maximum likelihood is an intractable likelihood due to an unsolvable normalizing constant in the denom-
inator, except for very small datasets (for further discussion, refer to Sherman et al., 2006). Wu and Huffer (1997) and Huffer and Wu
(1998) suggest a Markov chain Monte Carlo estimation of the MLE; however, they and Sherman et al. (2006) found in the presence of
strong autocorrelation this estimation approach might perform poorly. An additional complication arises when the entire spatial lattice is not
observed, and then the autocovariate is a function of observed and unobserved data. Missing (unobserved) data are easily accommodated in
a Bayesian framework by initializing the Markov chains. Hoeting et al. (2000) originally developed a Gibbs sampling estimation method
within a Bayesian framework to accommodate missing data. Another more accessible Bayesian estimation option, albeit slow, is to use the
Gibbs sampling approach implemented in WinBUGS (Wintle and Bardos, 2006) as we do here.

Another common choice for modeling spatial binary data on a grid is the ICAR model that accounts for spatial autocorrelation using a
random effect (Zi ) with a spatial prior (Banerjee et al., 2004; Thomas et al., 2004),

logit.�i /DXˇCZi : (4)
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The computational advantage with this model is the ability to parameterize the joint distribution of the random effects .Z/ as a series of
conditional distributions, as follows:

Zi jZ�i �N

�
NSi ;

�

ni

�
(5)

where �i is all grid cells except i , NSi D
P
j2nbs.i/ Sj =ni with j 2 nbs.i/ denoting the set of cells within the neighborhood of cell i ,

ni is the number of neighbors for cell i , and � is the parameter related to the variance of the conditional distributions. In this model, the
mean of the conditional distribution is an average of the spatial effects of the neighbors, and the conditional variance is proportional to the
number of neighbors. A joint specification of the random effects, such as when using a point-referenced spatial model, requires inversion
of the variance-covariance matrix. This is typically an unreasonable computation burden for large datasets; however, Hooten et al. (2003)
used orthonormal basis functions to decompose the joint distribution of .Z/ for prediction on a large spatial domain, similar in size to ours.
For another application of modeling rare plant distributions using ICAR, refer to Ishihama et al. (2010); for a more statistical treatment and
possible extensions, refer to Pettitt et al. (2002).

In this paper, we consider the effects of different sampling designs and choice of binary spatial model (ALR versus ICAR) on both pre-
dictions to unsampled locations and parameter estimation of the coefficients (ˇ) and their standard errors using a simulation study. To date,
simulation studies exploring prediction performance or parameter estimation for binary spatial models have been based on simulating virtual
species distributions (ALR: Wu and Huffer, 1997; Hoeting et al., 2000; Reese et al., 2005; Sherman et al., 2006; Wintle and Bardos, 2006;
Dormann, 2007; Van Teefeflen and Ovaskainen, 2007; Santika and Hutchinson, 2009; although see Augustin et al., 1996, which subsampled
an inventory of deer counts). Our study is unique in that we investigate these questions by virtually sampling a true known spatial distribution
of a NIS.

Cluster type designs are preferred for both covariance parameter estimation and prediction of new observations using spatial models
with Gaussian error distributions (Zimmerman, 2006; Irvine et al., 2007). For Bayesian estimation of ALR, Wintle and Bardos (2006)
found cluster sampling improved convergence properties, but predictive performance was not impacted by the choice of sampling design.
These cluster designs consisted of randomly placed clusters or clumps of points or plots on a landscape. These designs do not neces-
sarily maximize the number of presences in the data or increase detections as suggested by Reese et al. (2005) to improve Bayesian
ALR predictions.

Another way to achieve a clustered pattern of plots on a landscape is by adaptive cluster sampling (ACS). ACS is an efficient and field-
tested way to sample rare and sparsely distributed species spatially; thereby increasing the number of detections of a species (Thompson,
1990; Philippi, 2005; Samalens et al., 2007; Morrison et al., 2008). ACS consists of two stages, the first is a probabilistic selection of units
from the population (initial set), and the second stage defines the inclusion of additional sampling units within some neighborhood of a
selected unit that meets a prespecified condition, such as detection of a species within a plot (Thompson, 2002). Modifications of ACS have
been introduced for easier field implementation, such as adaptively adding a larger diameter circular plot if a smaller circular plot meets the
desired condition (Yang et al., 2011). Adaptive sampling methods are commonly evaluated in terms of design-based estimates of population
means, totals, or densities (refer to the review by Turk and Borkowski, 2005; Abrahamson et al., 2011; Yu et al., 2012). However, Reese
et al. (2005) explored ACS for predicting species distributions using ALR and found this design resulted in fewer omission errors, to date
no investigation of the ICAR and ACS has been performed.

We explore strip ACS designs, in which the initial set sampling unit is a transect or strip composed of 15 contiguous 10 by 10-m plots
(Thompson, 2002). Transect designs are commonly employed for sampling NIS because of the decreased effort and time to sample walking
along a transect compared to dispersed plots (Rew et al., 2006). We considered two different strategies for selecting the initial sample set
of transects: randomly on the landscape (hereafter simple random transects [SRT]), and targeted starting from roads and trails (hereafter
targeted transects [TT]). Statistically, the SRT design allows for inferences to the entire landscape (if accessible); however, the logistical
tradeoff with more effort to move and sample between transects (Rew et al., 2006) may not overcome the added inferential scope. Popu-
lations of invasive plants commonly occur in patches close to roads and trails (Spellerberg, 1998; Parendes and Jones, 2000; Gelbard and
Belnap, 2003; Watkins et al., 2003; Pauchard and Alaback, 2004; Sharma and Raghubanshi, 2009; Craig et al., 2010; Seipel et al., 2012).
Also, any new invasions are likely to occur in such habitats rather than less disturbed sites (Hansen and Clevenger, 2005; Arevalo et al., 2010;
Haider et al., 2010; Pollnac et al., 2012). Therefore, TT designs are appealing from a field logistics and biological perspective. We explore
whether the inferences concerning species–environment relationships are affected by using the targeted sampling approach compared to
randomly placing transects throughout the spatial domain.

In our investigation, the second phase of sampling (adaptive phase) is triggered when an occurrence is detected along the transect. The
second phase sampling unit is a 10 by 10-m plot. Various modifications to transect designs that include an adaptive phase were preliminarily
assessed by Rew et al. (2006) and Maxwell et al. (2012) for optimal NIS patch detection, and Brummer et al. (2013) for predictions to
unsampled areas using LOGIT. Here, we evaluate whether adding an adaptive phase leads to better model performance, particularly, for
spatial binary models. We also consider different neighborhood definitions for determining how the adaptively added plot is selected based
on the known dispersal characteristics of our censused species.

This article is organized as follows. We describe our simulation study based on virtually sampling a census of smooth brome (Bromus iner-
mis Leyss.) from Little Bighorn Battlefield National Monument, Montana in 2010 (Section 2). We present our results exploring the effects
of sampling designs and binary spatial models in terms of both prediction and determining species–environment relationships (Section 3).
We conclude with a discussion of our results in the context of other simulation studies and provide guidance on preferred sampling designs
and spatial model for sparse and clustered populations when spatial modeling is of interest (Section 4).
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2. SIMULATION STUDY
Simulation studies investigating the effect of sampling design choice on spatial model performance typically generate multiple stochas-
tic realizations (virtual landscapes) from a specified spatial model and then different sampling designs are overlaid. The benefit of such an
approach is that the generating model and parameter values are known. In our case, we know the true spatial distribution across the landscape
sufficient for considering predictive performance as the true presence/absence values are known over the entire spatial domain. However, as
we are also interested in estimation of species–environment relationships, technically we do not know the true parameter values (ˇ or ı) for
the census data. Therefore, we begin with a brief description of the census data (Section 2.1), and then we use ALR, LOGIT, and ICAR to
estimate the relationship between log-odds of B. inermis and environmental predictors using the complete census dataset (Section 2.2) for
comparison to parameter estimation results based on sub-sampling the spatial domain.

2.1. Description of census data

Bromus inermis is a rhizomatous grass in a late stage of invasion at Little Bighorn Battlefield National Monument, and it is distributed in
dispersed patches throughout the inventoried area. We chose B. inermis for the study because the species has not been managed, and it was
one of the most abundant species inventoried by Lehnhoff and Lawrence (2010). Their census was conducted by following parallel 30-m
wide transects distributed across their entire study area, and recording the length and width for each B. inermis patch encountered using a
TrimbleGeoExplorer (XT or XH) global positioning system receiver. We used a 195 ha area of the censused landscape as the basis for the
simulated sampling events (Figure 1). There was one main road traversing the study site, as well as smaller roads and interpretative trails.
We used ArcGIS 9.3 (ESRI, 2009) and the census data to create the virtual landscape at a 10 m resolution by first using the length and width
data to delineate B. inermis patches and then rasterizing these patches. The result was a 121�161 grid (19,481 cells total), where the presence
or absence of B. inermis was known for each grid cell. Additional environmental predictors included slope, elevation, and aspect derived
from a 10 m digital elevation model (US Geological Survey), and distances to roads and trails that were calculated from spatial data provided
by the National Park Service.

2.2. Analysis of census data

We used logistic regression to model the probability of B. inermis occurrence as a function of the available environmental predictors. We used
a backwards-forwards variable selection procedure using the stepAIC function in R version 2.12.2 (The R Development Core Team, 2011).
The full set of predictor variables included: X -coordinate, Y -coordinate, elevation, slope (degrees), aspect, distance to roads, distance to
trails, slope * aspect, elevation * distance to roads, and slope * distance to roads. This full set was determined based on exploratory data
analysis; the full model had an AIC value of 3153.504. The final model with the lowest AIC (3150.138) was

logit.�i /D ˇ0C ˇ1X � coordinatei C ˇ2Y � coordinatei C ˇ3Elevationi C ˇ4Slopei

C ˇ5Dist2rdsi C ˇ6Dist2t railsi C ˇ7Dist2rds �Elevationi C ˇ8Slope �Dist2rdsi

DXˇ (6)

where �i is the probability that B. inermis is detected within grid cell i and all predictors were standardized, .xij � Nxj /=SD.xj / for all j
predictors. The delta AIC was only 3 points suggesting marginal support for the top model, and only 14.9% of the deviance was explained
by the model. The logistic regression model in (6) ignores the likely spatial autocorrelation in the data.

For ALR, we specified the same mean structure as for LOGIT, and the autocovariate was calculated by summing the eight neighboring
cell values, unweighted. We explored the simplest type of autocovariate, but other more complicated functions of the neighboring cell values
could be calculated based on the known biology of the species. We did explore whether the choice of neighborhood affected the AIC and
there was no improvement with larger neighborhoods, following the suggested methods by Van Teeffelen and Ovaskainen (2007). Also,
based on the fact B. inermis has relatively short dispersal distances, this definition seemed reasonable.

We estimated the LOGIT and ALR models using the glm function with (family = binomial) in the MASS package of R. Notice for the ALR
model this produces maximum pseudolikelihood (MPL) estimates; this approach is pseudolikelihood because we are assuming conditional
on the predictors the observations are still independent. We used Bayesian estimation for the parameters of the ICAR model. We assumed
the neighbor set (nbs.i/) were the eight adjacent cells, as we did in the ALR model. We used the package geoBUGS and the car.normal
prior on the random spatial effects to fit the ICAR model in WinBUGS (Lunn et al., 2000; Thomas et al., 2004). The ICAR model has an
additional variance parameter (� in (5)), we specified a gamma prior on 1=�, specifically Gamma.0:5; 0:0005/, as suggested in Kelsall and
Wakefield (1999). We used normal priors for the regression coefficients, ˇ �N.0; �/ with � , the precision parameter, equal to 0.01.

A comparison of ICAR, ALR (MPL estimation), and LOGIT models fit to the census data suggests that the LOGIT and ICAR point esti-
mates are similar for the environmental predictors (Table 1). The standard errors were consistently larger for both spatial models compared
to the LOGIT, as we would expect (Table 1). However, the standard error estimates were larger for the ICAR compared to the ALR model.
This is not too surprising based on other studies that found the standard errors are under-estimated using MPL (e.g., Wu and Huffer, 1997;
Sherman et al., 2006).

2.3. Sampling designs

We explore two options for placing the initial sample set of transects (15 contiguous 10 m cells in a line) in a real population of B. inermis:
SRT or a random starting location along roads or trails (TT, these represent perpendicular transects in Rew et al. 2006; Figure 2, first split

wileyonlinelibrary.com/journal/environmetrics Copyright © 2013 John Wiley & Sons, Ltd. Environmetrics (2013)



ADAPTIVE SAMPLING AND BINARY SPATIAL MODELS Environmetrics

Table 1. Standardized coefficient estimates and standard errors of environmental vari-
ables for the complete census dataset, using logistic regression, the pseudomaximum like-
lihood estimation procedure of the autologistic regression model, and the intrinsic Gaussian
conditional autoregressive (ICAR)

Predictor variable Logistic Autologistic ICAR

Intercept �5.46 (0.13) �5.32 (0.13) �7.84 (0.37)
X -coordinate 0.52 (0.10) 0.27 (0.12) 0.43 (0.20)
Y -coordinate 1.52 (0.10) 0.42 (0.12) 1.66 (0.18)
Slope �0.30 (0.07) �0.19 (0.08) �0.32 (0.10)
Elevation 0.02 (0.16) �0.43 (0.19) �0.03 (0.28)
Distance to roads �0.84 (0.16) �0.70 (0.17) �1.23 (0.29)
Distance to trails 1.04 (0.12) 0.29 (0.13) 1.08 (0.19)
Elevation* distance to roads �0.93 (0.07) �0.34 (0.09) �1.10 (0.11)
Slope* distance to roads �0.17 (0.06) �0.04 (0.07) �0.007 (0.12)
Autocovariate NA 1.18 (0.05) NA

SAMPLING SCHEME

SIMPLE RANDOM
STARTING FROM
ROADS OR TRAIL

(random starting location)

ADAPTIVELY
ADD PLOTS?

ADAPTIVELY
ADD PLOTS?

NO YES

SRT-NA NEIGHBORHOOD
TYPE

FIXED RANDOM

8 adjacent
plots

SRT-AK

new plot
within circle

SRT-360

new plot
within rectangle

SRT-LR

NO YES

TT-NA NEIGHBORHOOD
TYPE

FIXED RANDOM

8 adjacent
plots

TT-AK

new plot
within circle

TT-360

new plot
within rectangle

TT-LR

TRANSECT
PLACEMENT

Figure 2. Decision tree describing eight different sampling designs explored in simulation study, abbreviations for designs are enclosed in boxes. The first
split is how transects were placed within the spatial domain, the second whether or not plots were added if a detection was made along the transect, and the
third was choice of neighborhood based on classic kings move (-AK) or modified based on dispersal distance (-360 or LR). All adaptive designs sampled

eight adjacent cells if nonindigenous plant species was detected within the neighborhood. Sampling stopped once 50 additional plots were added.

on decision tree). Adaptive sampling is an alternative to conventional sampling, in which, for our case, the selection of additional grid
cells (or 10 by 10-m plots) within a specified neighborhood was initiated if a NIS was observed in one of the plots within one of the ini-
tially selected transects (refer to Thompson, 2002; Figure 2 split two on decision tree). We explored three different neighborhood definitions
(Figure 2, split three on decision tree). One neighborhood is fixed in the sense that the criterion of a presence is met and sampling proceeds in
a prescriptive fashion, whereas the other two neighborhood types add an element of stochasticity for where the adaptively added plot should
be sampled. For the fixed neighborhood, adaptive king design (AK), we defined the neighborhood as the eight adjacent plots surrounding
an occupied plot (a king’s move in the game of chess). If additional NIS were detected in any of the neighborhood plots, a new king’s move
neighborhood was added to the survey. Only plots not previously surveyed or added to the sample were included in the new neighborhood,
sampling without replacement. Surveying continued until no neighboring plots contained NIS or the number of neighborhood plots surveyed
reached 50 (Figure 3(a)).

We also investigated whether there was any benefit to defining the neighborhood based on the known dispersal of the species. For our
species, B. inermis, reproduction is both vegetative and by seed, and dispersal distances are short. We modified the AK design where upon
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Figure 3. Explanatory depiction of a small portion of simulated sampling using adaptive cluster designs (a) adaptive king (AK) and (b) adaptive 360 (360),
where white cells represent non-sampled, shaded cells represent sampled, and P represents cells with Bromus inermis present. The dash line indicates a road.
For the 360 method (b), arrows indicate the cell selected randomly within a circle of radius 30 m and centered on the transect cell where B. inermis was

detected. The adaptive LR design used a rectangle with the same width of 30m.

observing a NIS presence in the original transect, instead of adding the immediate neighboring plots to the transect, a randomly selected
plot that was within a circle centered at the current occupied transect plot and at a radius equal to the 30 m was surveyed first. If NIS was
detected within the random plot, additional neighbor plots were added to the survey and sampled as described for the AK design. We denote
this design as 360 (Figure 3(b)).We also used a rectangle with length equal to the 30 m, such that if a detection was made along the original
transect, then a random plot to the left or right of the plot with NIS on the transect was selected for sampling (abbreviated as LR).

A sampling event consisted of placing 64 transects (approximately 5% of the study area prior to adaptive sampling) based on either the
SRT or TT design for the first phase. During the second phase of sampling, additional plots were sampled based on one of the three adaptive
cluster designs (AK, 360 or LR). We simulated 10 independent sampling events for a total of 80 unique datasets using computer programs we
developed using the open-source programming language Python (Python Software Foundation, 2007). Although we considered less intense
sampling (1% and 2%), we encountered convergence issues for the spatial models, consistent with other simulation studies (Reese et al.,
2005; Wintle and Bardos, 2006) investigating Bayesian estimation of ALR.

2.4. Statistical models and estimation methods

For each of the 80 datasets, we fitted three distinct models, non-spatial LOGIT, ICAR, and ALR. Also, we explored two different estimation
methods for the ALR. Bayesian estimation can be computationally time intensive for large datasets, so we also explored a commonly used
short-cut estimation approach for the ALR model based on MPL extended to sampled data (Wu and Huffer, 1997). We used the same set of
environmental predictors as in Table 1 for all models.

For Bayesian estimation of ALR in WinBUGS version 1.4.3 (Lunn et al., 2000), we adopted the code from Wintle and Bardos (2006).
Refer to Section 2.2 for our specification of the Bayesian ICAR model; the same was used for the sampled datasets. We used initial val-
ues based on the MPL estimates of the parameters. We used the same diffuse normal priors for all the environmental predictor regression
coefficients and the autocovariate (if appropriate).We ran three chains of 200,000 iterations with a burn in period of 100,000. The remaining
iterations were thinned by 200 to produce a total of 1500 posterior draws for each parameter. We calculated the Gelman–Rubin diagnostic
to evaluate convergence for all parameters.

We considered a short-cut option for estimating the parameters of ALR using sampled data based on approaches described in the ecologi-
cal literature (Augustin et al., 1996; Dormann et al., 2007; Van Teeffelen and Ovaskainen, 2007; Santika and Hutchinson, 2009). We created
a prediction probability for each grid cell based on the observed sampled data. The predicted probability of occurrence is
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O�i D exp.Xi Ǒ/=Œ1C exp.Xi Ǒ/� (7)

where Ǒ is estimated using LOGIT. The autocovariate was then calculated based on the predicted probability of occurrence values in the
neighborhood of each grid cell as, autocovi D

P
j2nbs.i/ O�i , where nbs.i/ is the set of neighbors for cell i . The parameters of the ALR

were then estimated using the glm() function; we denote this approach as MPL.

2.5. Predictive performance criteria

We calculated the area under the receiver operating characteristic (ROC) curve (AUC) as a measure of predictive performance. The ROC
curve plots false–positive prediction rates against true-positive prediction rates. AUC scores range from 0 to 1.0 and a score of 0.5 indicates
that the model discriminated among plots with or without B. inermis no better than random chance, whereas a score of 1.0 indicates that
the model discriminated among plots with or without B. inermis perfectly. We used the ROCR package in R to estimate AUC (Sing et al.,
2009). For each of the 80 sampling events, we used the sample data to build the models (LOGIT, ICAR, ALR: Bayesian and MPL) and the
remaining unsampled inventory values for the validation set (hold-out set).

We used paired t -tests to compare two model results for the same dataset, for example, ALR compared to ICAR for SRT-AK design,
to assess whether the AUC values were significantly different. For a given model to determine whether there was any predictive benefit to
adding an adaptive phase to the initial transect, we used a two-way ANOVA with all pairwise comparisons adjusted by Tukey correction
factor. Within a given transect placement (SRT or TT), the simulation design is a randomized complete block design without replication.
The sampling event was the blocking factor with 10 levels and the sampling design was the treatment factor with four levels (NA, AK,
360, LR).

2.6. Parameter estimation criteria

To compare the difference in parameter estimates of the environmental predictors, we calculated the median over the 10 different 95% pos-
terior (confidence) intervals for each of the four model/estimation techniques (LOGIT, ICAR, ALR: Bayesian and MPL) for each sampling
design. We were interested in assessing whether there was a substantial difference in both the uncertainty in the point estimates and the point

0.
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0.
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0.
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0.
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0.
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0.
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80

NA AK 360 LR

SRT
NA AK 360 LR

TT

AUC

NA AK 360 LR

SRT
NA AK 360 LR

TT

AUC

(a) (b)

(c) (d)

Figure 4. Box and whisker plots of area under the curve values (AUC) for (a) logistic regression with spatially explicit predictors, two different estimation
methods for the autologistic regression model (b) MPL and (c) Bayesian; and (d) ICAR spatial model all used same environmental predictors. Each model
was fit to the 10 replicate datasets for the eight different sampling designs (NA, non-adaptive transect method; AK, adaptive king; 360, adaptive 360; and LR,
adaptive left or right methods) applied along simple random transects (SRT) or targeted transects (TT). Reference lines at AUC value = 0.70 and = 0.80 are

included for easier comparison across panels.
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estimates themselves. Our only basis for comparison of the effects of sampling design on inferences are the parameter point estimates based
on the inventory data (Table 1), so we cannot compare model estimates to a true generating model as is common in most investigations
to date.

3. RESULTS
In terms of predictions to unsampled areas, the Bayesian spatial models were superior for most sampling designs investigated (Figure 4(a)
and (b) compared to (c) and (d)). The two non-Bayesian models, MPL estimation for ALR and LOGIT, were essentially equivalent in terms
of predictive power for all designs (Figure 4(b)), on average different by only 0.01 to 0.02 AUC units (based on paired t -tests). For all
designs, the Bayesian ALR produced higher median AUC compared to the MPL estimation of ALR (Figure 4(b) compared to (c)). Bayesian
ALR and ICAR models were not statistically different except for the SRT-AK and TT-NA designs (Figure 4(c) and (d)). The Bayesian ALR
model was better, on average, compared to the ICAR model for the TT-NA design, whereas the ICAR was superior for the SRT-AK design,
on average.

There was not a consistently “best” design for prediction. For the TT designs, there was not a clear distinction among the different types of
neighborhood in terms of prediction; further, there was not a substantial benefit to adding an adaptive phase for both Bayesian spatial models.
In terms of the SRT, for Bayesian ALR, the SRT-360 was statistically better than the other neighborhood types (SRT-AK and SRT-LR), but
not practically different, only 0.03 units (Figure 4(c)). However, the SRT-AK design was clearly superior when using the ICAR (Figure 4(d)).

The Bayesian ALR suffered convergence issues in all, or a subset of the regression parameters (Gelman–Rubin statistics > 1:2) for 20 of
the 80 datasets. Interestingly, most occurred with the non-adaptive designs, when the adaptively added units for these sampling events were
included in the analysis, convergence was attained and predictive performance improved dramatically. The ICAR did not show convergence
issues based on the Gelman–Rubin statistics. However, some of the posterior intervals for the environmental predictors were unreasonably
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large. We adjusted the normal priors to be less diffuse 1.0E-2 versus 1.0E-4; in general, patterns were the same. We present the results for
parameter estimation based on the less diffuse priors for the ICAR model (Figure 5).

In terms of evaluating the relationship between B. inermis and environmental predictors, the spatial models would produce similar con-
clusions across the different designs with most of the predictors’ posterior intervals suggesting very weak or no association. For brevity, we
show only estimation results for elevation (Figure 5(a)), distance to roads (Figure 5(b)), and elevation * distance to roads (Figure 5(c)). The
most striking pattern was that for all the adaptive designs the ICAR posterior intervals were much wider compared to the other models. The
ICAR point estimates were similar in sign and effect size to the LOGIT, although not always.

For elevation, the predictor with the smallest effect size (Figure 5(a)), the results for all models and designs would lead to the same gen-
eral conclusions as using the fully censused dataset. For the predictor with the largest effect size (distance to roads Figure 5(b)), the ICAR
estimates using the SRT designs would suggest a negative association with the log-odds of B. inermis, whereas the ALR would suggest no
association (posterior intervals all contain zero). However, with the TT adaptive designs the models would all suggest no or a very weak
negative association. For the interaction term (elevation * distance to roads, Figure 5(c)), LOGIT and ICAR produced negative point esti-
mates compared to essentially zero for the ALR methods using the adaptive designs. These patterns were similar to model results based on
the census dataset. Specifically, ICAR point estimates had larger uncertainties and effect sizes closer to LOGIT compared to ALR (Table 1).

A key practical question, based on the ubiquitous use of the MPL approach in ecology, is whether there is a trade-off for ecological
inferences when using this short-cut estimation approach compared to the full Bayesian implementation. In terms of the autocovariate,
the Bayesian ALR median 95% posterior intervals were substantially narrower compared to the MPL for all designs. The other predictors
showed fewer differences between the two estimation methods for ALR (Figure 5). The choice of neighborhood for the adaptive phase (AK,
LR, versus 360) appeared less important for either estimation method. Interestingly, both estimation methods had narrower median intervals
for the adaptive designs compared to the non-adaptive designs.

4. DISCUSSION AND CONCLUSIONS
Our simulation study builds upon and deepens our understanding of the benefit of cluster sampling designs for spatial models by virtually
sampling a complete inventory, as compared to simulating the spatial distribution (Hoeting et al., 2000; Reese et al., 2005; Wintle and
Bardos, 2006; Irvine et al., 2007). The strip adaptive cluster designs we explored provided a significant advantage when trying to model a
sparsely distributed species across a large area in several aspects. A subtle benefit was improving convergence properties of the Bayesian
ALR model. These issues were likely a result of the large spatial autocorrelation in our data, based on others’ findings (Huffer and Wu,
1998; Sherman et al., 2006). The spatial models had the same or better predictive performance using the adaptive designs compared to the
non-adaptive design. The best predictive performance was achieved using ICAR and the SRT-AK design, randomly placed transects with
the AK neighborhood to include additional plots. Adaptive designs produce clustered patterns of plots on a landscape based on attempting to
maximize the number of observations with presences, so the fact they were better is consistent with other studies exploring sampling designs
for spatial modeling (Hoeting et al., 2000; Reese et al., 2005; Zimmerman, 2006; Irvine et al., 2007).

The use of TT designs, dependent on terrain and access, result in a large time savings; however, there can be a mismatch between the
sampled and target population. This is an example of under-coverage as some areas have zero probability of being sampled, a source of
non-sampling error (Thompson, 2002). We found that for B. inermis, there was little difference in predictive performance using the Bayesian
spatial models between the TT and SRT designs. However, the LOGIT and MPL estimation of the ALR model tended to have lower AUC
values using the TT designs. Similarly, the selection bias did not drastically affect the conclusions concerning environmental predictors
as most were non-significant once spatial autocorrelation was modeled. However, for our landscape, the environmental gradients were not
substantially different in those areas with zero probability of being selected using TT designs. The only exception was the predictor distance
to roads; the SRT designs using ICAR suggested a negative association, whereas the TT designs suggested no association. This is likely
because for this predictor the environmental gradient was sampled better using the SRT designs. This suggests perhaps the better option for
sampling NIS is a combination of an SRT and TT design, easily accommodated in an unequal probability design.

In general, the choice of sampling strategy for NIS depends on both the species characteristics (particularly, stage of invasion) and the
management goal. The species distribution data we used, B. inermis, is actually quite common relative to other NIS species. NIS presence
on the landscape is typically quite low (e.g.,<1% of the target area) particularly during the early stages of invasion when it is most critical to
detect patches to prevent spread. An exploration of sampling designs for maximizing the number of patches detected for the purpose of early
detection and rapid response management found optimal designs varied based on species characteristics. An optimal design for B. inermis
was, essentially, TT-AK compared to a species (Linaria dalmatica) earlier in the invasion (<5 years) for which walking along road corridors
was optimal for patch detection with the least amount of travel time (Maxwell et al., 2012). Based on our results, for species considered
at their maximum spread, no longer invading, a combination of the SRT and TT in an unequal probability design would be ideal for both
detecting patches and modeling spatial distribution. Although, further investigation into optimal allocation with unequal probability surveys
based on balancing travel time and sampling environmental gradients would be beneficial.

In terms of drawing inferences about the relationships between NIS probability of occurrence and environmental predictors, the posterior
interval widths differed considerably between the ICAR and other models. In our simulation, the ICAR had larger uncertainty estimates and
effect sizes closer to the LOGIT model for the adaptive designs. The dramatically larger uncertainty estimates for some situations was likely
an artifact of an over-specified mean structure once we accounted for spatial autocorrelation. When we reduced the predictor set, the intervals
were narrower albeit still wider than the independent LOGIT, as we would expect. Another approach would be to use a restricted spatial
regression model (RSR), this is an emerging tool for spatial analysis to minimize the possible confounding of environmental predictors (fixed
effects) and the spatial process (modeled via random effects) (Reich et al., 2006; Hodges and Reich, 2010). In a comparison of ICAR and
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RSR for binary data, Johnson et al. (2013) found dramatic improvements using the RSR in terms of reducing credible intervals. Future work
exploring model selection for binary spatial models, including the emerging RSRs, would be insightful.

Bromus inermis has been widely introduced throughout the USA for forage and revegetation purposes. It has relatively short dispersal
distances with both sexual and vegetative reproduction. Importantly for our study, the species has not been controlled in the survey area.
Therefore, we assume the species has reached equilibrium with its environment. However, only 39.2% of the deviance in the inventory data
was explained by the ALR model. This suggests that other relevant predictors may exist such as biophysical variables, likely leading to low
predictive performance (AUC < 0:9) relative to other previous studies that used simulated species distributions (Hoeting et al., 2000; Reese
et al., 2005; Wintle and Bardos, 2006). Our study is generalizable to other species distribution modeling efforts in which the species of inter-
est has similar statistical properties; low prevalence and clusters of presences dispersed throughout the domain and located near corridors (in
our case a road, but could be a stream or river corridor).

However, there are inherent drawbacks with using real data; there are a limited number of distinct sampling events possible depending on
the size of the spatial domain and the true species–environment relationships are unknown. Our spatial domain was quite large (19,481 grid
cells) compared to other previous simulation studies (Hoeting et al., 2000; Reese et al., 2005; Wintle and Bardos, 2006; Dormann et al.,
2007); however, we only had 10 unique sampling events for each design. The number of simulations was limited, primarily because of the
high computational burden for using Bayesian estimation for ALR, and the fact that the size of the spatial domain resulted in redundancies
in the simulated sampling events. Regardless, we feel the general patterns we describe would hold with NIS distributions with similar char-
acteristics to B. inermis, that is, later in the invasion process with low prevalence (1.91%) and occurring in dispersed patches located close
to roads and trails.
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